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Processes of heating and gasdynamlc motion of substances under the action of 
strong laser radlatlon are studied. The case of heating of a transparent 
mass of gas is examined. Also the problem of heating by radiation of an lnl- 
tlally cold and stationary gas occupying a volume adjacent to a vacuum 1s 
solved. 

The existence of self-similar state of flow 1s pointed out. Results of 
self-similar solution and numerical calculations are presented and compared. 

The possibility la discussed to use the obtained results for describing 
the heatlng and vaporization of material from the surface of a solid body In 
the case of action of strong laser radiation with modulated streangth. 

In connection with investigation of the possibility of heating metrlal to 
high temperatures by laser radiation with modulated strength, recently the 
examination of a number of gasdynamlc problems is of substantial interest 
which take place on focusing the radiation on the surface of condensed media. 
The gasdynamic approach to the solution of Indicated problems 1s dictated by 
the circumstance that for sufficiently powerful fluxes of laser radiation the 
temperature Increase IS associated with an Initiation of gasdynamlc motion of 
material ("vaporization"), which in turn exerts substantial Influence on the 
entire urocess of heatinn. An essential necullarity of the process under 
examination, which complicates the solution of the problem, 1s the dependence 
of the absorption power on the state of the substance in Its gaadynamlc 
motion. 

Indeed, if the absorption coefficient per unit mass 1s a constant value, 
then the main part of the Incident flux Is absorbed In a layer of approxl- 
mately constant mass with optical thickness -1, and In this case It Is not 
dependent on the state of the substance. However, If the coefficient of 
absorption depends on the density and temperature, which Is realized for 
example in an ionized gas, then the optical density of the substance strongly 
depends on the distribution of gasdynamlc quantities. In the latter case 
equations of radiation transfer become substantially more complloated because 
of dependence on gasdynamlc quantities. 

Casdynamlc motion was taken Into consideration for heating by laser radla- 
tlon of small volumes of material with constant mass ln [l and 2). However, 
In all these papers gasdynamlc equations werenot examined. The motion of 
matter was described by means of quantities averaged over the volume. Heat- 
ing of matter with varying mass wlthout taking into account gasdynamlc motion 
was examined in [ 31. In papers [4 and 53 gasdynamlc motion waa examined for 
a given mass of material the optical thickness of which was much smaller than 
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one, while the absorption depended on temperature and density. 

One-dimensional gasdynamlc problem of heating of material is examined 
below for the case of Incident strong monochromatic laser radiation on the 
surface of gas which Is initially cold and Immobile and which prior to heat- 
ing fills a halfspace adjacent to a vacuum. The special feature of the prob- 
lem examined is, In distinction from those mentioned above, the exact solu- 
tion of gasdynamlc equations in case of changing mass which Is Included by 
the motion in the process of action of a laser radiation pulse. 

The solutlqn of such a problem can be used for approximate description of 
the process of vaporization and heating of a solid substance placed In a 
vacuum under the action of laser radiation. 

1. Equations of motion, continuity, energy and transfer of radiation in 

the planar case have the following form In Lagrangian mass coordinates: 

Here u Is the velocity, p is the pressure, v is specific volume, 

e Is Internal energy per unit mass, F Is the radiation flux, X is the 

absorption coefficient and m Is the mass coordinate. 

At the Initial Instant the substance fills the halfspace m > 0 (x: 0) 

and Is cold (e = 0) and immobile (u = 0) . At t > 0 radiation flux F0 

falls on the subktance from the vacuum side. The ?nltlal and boundary con- 

ditions thus have the form 

F=u=p=Q, v = vg for m>O, t=O (1.2) 
p = 0, F =F, for m=O, t>O 

We shall assume that the coefficient of absorption K Is a power function 

of Internal energy e and density p 

K = a@” 
For fully Ionized plasma,for example, a = 2 and e = - 3/a . It is 

apparent that for such a coefficient of absorption an Increase In temperature 

and expansion of gas lead to a decrease of absorption of heated and rarefied 

layers and to adeeper penetration of radiation. 

Let us examine the process of heating of material by radiation. For slm- 

pllclty in this connection we shall assume that the substance Is a gas with 

an equation of state e - pu(x - l), where x Is the adiabatic Index. The 

expression presented above for the absorption coefficient is applicable over 

the entire range of densities and temperatures. 

At first let us determine the maximum temperature which can be obtained 

on heating of a plane transparent layer of gas of fixed mass mu. The energy 

equation In this case has the form 

(1.3) 

From this we have the following expression for Internal energy at some 

point before arrival of rarefaction wave at that point 
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The wave propagation time of rarefaction over the distance x is equal to 

~ax~rn~ temperature is apparently achieved in the center of the layer, 

i.e. at the point ama and is determined from Equation 

e 
i 

3lm”F~ ‘13 -- 
max - 1 J2+qx _ I)“‘, (1.6) 

Corresponding numerical calculations, for which results are presented in 
Fig.1 and 2, show that (1.6) is somewhat low value because the gas. continues 
to heat up during some Interval of time after the arrival of the rarefaction 
wave at the point m I *mm" 

Fig. 1 Pig. 2 

In Fig.1 the change of dimensionless product pv Is shown as a function 
of dlmenelbnless time t (for relationships between dimensionless and dlmen- 
slonal variables see below) for various points of d%nenslonless mass. 

In Fig. 2 the change of dimenslonlesa velocity u is shown as a function 
of time for the same particles of material. An analogous picture occurs, as 
Is shown by calculations, also In the ease of spherical and cylindrical sym- 
metry. 

In the case when the gas fills the halfspace m 5 0 , a wave of heating 
propagates through this halfspace with a layer depth which Is proportional 
to the length of passage of the radiation quantum 1 = k-l-~8/"-$~~ (see 

(1.4)). The rarefactlon wave propagatea according to the relationship 
s-$/b (see (1.5)). Consequently, In the beginning of the process the width 
of the heating zone la slgnlflcantly greater than the width of the region 
where the gas moves and therefore It la permlsslble to neglect the change in 
density. The problem of nonstationary heating wave with changing coefficient 
of absorption la eelf-similar and ~813 examined In 141. The heatlng wave has 
a sharp front Similar to a heat wave in case of nonlinear heat conductivity. 
The character of temperature dependence In It Is close to a plateau. 

After some interval of time t,, the rarefactlon wave catches up with the 
heating wave. This time Is determined by the relatlonshlp 
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I (tJ = 5 c(t) dt 
0 

where I Is the average length of travel of the quantum over the heated 
region (equal to the depth of the heating zone), Is the sound speed. 
From this it IS possible to determine the lnternal'energy of gas and 
the temperature at the front of the heating wave, which Is achieve: at the 
moment of arrival of the wave of rarefaction: e 01) = (HO%)%. 

In contrast to transparent mass in case of which the temperature has a 
maximum at the moment when the gasdynamlc motion starts, It Is not obvious 
for the case of heating of an unlimited mass of gas that a temperature de- 
crease must take place with the beginning of gasdynamlc motion. 

In this case for ts t, a regime occurs for which the rarefactlon wave 
front coincides with the heating wave front. For the absorption coefficient 
assumed above, the behavior mentioned turns out to be self-consistent [3]. 
The temperature Increase takes place at the expense of absorption of Incident 
flux In the region which Is encompassed by the gasdynamic motion with specl- 
flc volume 0,s Do. The optical thickness of this region turns out to be 
of the order of unity. 

In connection with the possibility of existence of the mentioned behavior 
of heating of gas which fills the halfspace x 2 0 , the circumstance Is 
assumed to be essential La;: the analogous self-consistent behavior can at 
least asymptotically s'ablllz> itself in the interaction of strong laser 
radiation with material evaporated from the surface of the solid hotly. 
Indeed, the flux of la.qer radlatlon F. falling on the surface of a solid 
body Is absorbed ln a 12ver the thickness of which is of the order of 1r4 
to lo-'cm (strongly absorL1ng materials similar to metals are examined). 
After the time 

where c 1s the heat capacity, a Is the coefficient of thermal conductl- 
vlty, U Is the energy of evaporation per atom, k Is the Boltzmann con- 
stant, the Internal energy c of the absorbing layer becomes much greater 
than the specific heat of vaporization and the vaporized material can be 
assumed to be a gas. Subsequent heating of vaporized material must take 
place In a self-consistent manner according to the following considerations. 

Let the coefficient of absorption as before decrease with Increase in 
temperature and increase with Increase In density. We shall assume, for 
example, that the material evaporated up to some Instant of time 1s transpar- 
ent to Incident radiation (low density and high temperature), then the vapors 
will only slightly screen the surface from which Intensive evaporation of 
new portions of material will take place leading to 811 Increase In density. 
This ln turn Increases the absorption of radiation In vapors and consequently 
the screening of the surface. The rate of evaporation decreases In the fol- 
lowing moments, which now leads to a decrease In the coefficient of absorD- 
tlon,-etc. Th& considerations presented Indicate that the process under _ 
examination will lead to the situation where the optical thickness of the 
vaporized layer will reach some constant value. 

The problem consists of finding a solution of the system of equations (1.1) 

for which the optical th1clPless of the layer of evaporated material will 

reach some constant value. Such a solution exists and is Independent of the 

heat of sublimation. This naturally Indicates that the self-consistent 

behavior Is stabilized starting from the Instant of time when the temperature 

of vapors at the surface of the solid body 1s much greater than T I w/k . 

The existence of such a solution Is formally related to the fact that In 

satisfying the Indicated conditions the problem becomes self-similar. In 

fact, if the absorption coefficient of vaporized material has the form 

K (p, T) = u,~v~ = c+$" (r > o, s< o), then from the four determining 
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parameters of the problem FO, u , pO and ut , only the first two are 

essential (here we shall use Euler’s coordinates x, t) . 

prom dimensional conalderations it follows in this case that the unknown 

functions u , p and p must have the form 

u = $ t-:v:1> 
U(k), F = F,0st3(‘+‘)H (A)) p = F,,G?P (h) (1,7) 

f) = [~~~~~fs]l.'Ll-ictts~l, Y = (3f + s) I(1 - (37. + s)) 

Here h = ezt” is the self-similar variable, I/(X) , R(I) and P(X) are 

dimensionless velocity, density and,pressure, respectively. 

Approximate solution of the corresponding aystem of self-slmllar equations 

for the case of plasma (t I '/,,, 8 - - "/*) gives for temperature and density 

near the surfaoe of the solid body and the amount of vaporized material the 

following expreseions: 

T 
0.97 E A. pji’($$“ttf’, p = 0.31F,‘f4a,3”t”~s, m, = 0.37F,““az-1”t”’ (1.8) 

Here Rc is the gas constant, u Is the atomic weight. In this case the 

ratio of flux F lnoident on the surface of the solid body to the total flux 

F,, has the value y 0.78. The ratio of velocity u, of gas boundary with 

vacuum, and the velocity uc near the surface of the solid body is a 5.2. 

Let ua continue the examination of gaa heating for the case where the 

absorption aoefficlent changes In an exponential fashion. We note that gas- 

dynamic motion starts not only from the vacuum side but also as a result of 

preseure drop at the front of the heating wave. After the zone of sharp 

pressure gradients and large acoeleratlons passes through a given particle, 

the velocity achieved will have the order of magnitude 

~P!!.L p c2 
UO 

PO Ax 
-- 

POD = -ED. w 
Here Ax is the width of the "front" of the wave, p is the pressure in 

the heated region, At is the time of passage of the wave front through a 

given point, D 1s the velocity of motion of the wave front of heating. 

When D becomes smaller than the speed of sound in the heated medium, hydro- 

dynamic perturbations separate from the front of heating wave and form a 
shock wave front. The pressure in the region of the self-consistent rare- 

faction wave changes according to the relationship p -FF,'l$-'ha-'~~. If we 

consider that this region serves as a piston for the shock wave located at 

point mb and the pressure on its front is equal to p,- p , then 

From this it follows that with passage of time the shock wave separates 

quite slowly from the zone of self-consistent rarefactlon wave (T&, - t'~~~., 

while ?nzL - t'*/**). 
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Concepts presented above were checked by means of numerical Calculations 

for the case where the heated substance Is a gas with the equation of state 

e = pu/(n - 1) . 

2. Now let us transform the system of equations (1.1) to a dlmenslonlesa 

form, Introducing such factors ~0, pot to, mo, u. and F. that on multlPlY- 

lng the corresponding variables u, p, t, m, v and F by these faCtOrB, 

Equations (1.1) do not change their form. For this the fulfllment of four 

relationships Is required 

W% = P&l, vOmO = uOtO, povomo = W,, F, = po~*$Voum, (2.1) 

which we shall regard as a system of four equations with respect to four 

unknowns u,,, PO, to and m. , assuming the value v. to be equal to the 

Initial value of the specific volume of gas, while F. 1s equal to the value 

of energy flux from the vacuum side. Then by the method of successive ellml- 

nation of unhowns from (2.1), we find the relationships which we need 

u. = (v~F,,)‘~~, p. = v~~“:~F~*~~, to = : D~~“F~*‘~, m. = : Fovo2 (2.2) 

Now It Is sufficient to solve system (1.1) for single values of Initial 

specific volume of gas and external flow. For any other values the solutions 

are obtained by the method of multllpylng the obtained functions by factors 

(2.2). In this connection It Is necessary to take Into account that the 

mass of the layer must be either unlimited or the recalculation will give a 

solution for a new mass of layer m = mlFovoa, where m, Is the mass of the 

layer for the solution with single parameters (m,- l/u) . 

#d a8 m 

PIiT. 3 Fig. 4 

For the case of constant radiation flux F. over the entire gas layer the 

last llmltatlon Is removed since the number of equations Is less by one. In 

this case the transformation factors have the form 

(2.3) 

where the energy flux from vacuum is taken as Fo, V. Is the initial specific 

volume of gas, m" 1s the mass of the gas layer. A system of ordinary dlf- 

ferentlal equations was constructed which approximate the system of equations 

(1.1) with accuracy to quantities of the order of l/n' 
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Here E, Is the total energy of unit mass of gas; the Index t deslg- 

nates values of variables for m corresponding to t - 0, 1, 2, . . . . n . 

Initial values and boundary values for unknown functions entering Into 

system (2.4) where taken In correspondence with Initial values and boundary 

values of the original system (1.1) of partial differential equations. 

System (2.4) Is obtained under the assumption of sufficient smoothness of 
functions entering Into the system. It Is natural that In the region of the 
front of the shock wave where the values of derivatives are large, the compu- 
tations will be made with considerable error, However the shock wave In the 
prisent problem does not appear at once and Is not determining for the basic 
quantity sought which Is the maximum temperature of the gas. Therefore sys- 
tem (2.4) was utilized for making the continuous calculation. With the pur- 
pose of ellmlnatlng the tibump" and large error near the front of the shock 
wave after Its formation, an averaging technique was applied as a method of 
artificial smoothing of values according to a recommendation by A.A. Mlllutln. 
The error of equations (2.4) Increases In proportion to the Increase of the 

difference 

fi - (fi), 

Flg. 5 

where .. 

(fi) =l/3 (fi+l + fi + fi-1)~ 

Therefore the following was 
adapted as a criterion for lntro- 
ductlon of smoothing 

E = 1 - Gi>i fi 

The value of Y. after aver- 
aging Is take:. to-be equal to 
the arithmetic average of its 
values at points t -1, t and 
t + 1, I.e. to the value (fi) 
before averaging. 

In order to avoid averaging In the region of the leading front of the 
heating wave where sharp gradients of temperature occur until processes of 
hydrodynamic motion become substantial, the velocity was selected as the 
quantity from which the need for smoothing was determined. 

Results of numerical computations presented In Fig. 3 to 5, are In satls- 
factory agreement with ualltatlve considerations presented above and with 
self-similar solutions 1.8). 

In Fig.3 the change of the maximum value of dimensionless Internal energy 
is shown as a function of dimensionless time. It Is easy to see that for 
t-1 sharp deceleration In growth of e - pu/(~ - 1) starts. 

In Pig.4 the change of e Is shown as a function of the dimensionless 
Lagrange's coordinate m for several times. The formation of a shock wave 
Is clearly evident. 

In Fig.5 the distribution of dimensionless velocity u as a functly of 
dimensionless Lagrange's coordinate Is shown for several Instants of 
From a comparison of Figs. 4 and 5 It follows that starting with Instanti 
t m 1 the front of the rarefactlon waves moves together with the front of 



1225 

heating, I.e. the self-consistent behavior has arrived. 

The authors express deep gratitude to N.G. Basov, S.P. Kurdlumov and 

A.A Mlllutln for discussions and suggestions 

ante In carrying out numerical calculations. 
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