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Processes of heating and gasdynamic motion of substances under the action of
strong laser radlation are studied. The case of heating of a transparent
mase of gas 1s examined. Also the problem of heating by radlation of an ini-~
tiallg cold and stationary gas occupying a volume adjacent to a vacuum is
golved.

The existence of self-similar state of flow 1s pointed out. Results of
self-similar solution and numerical calculations are presented and compared.

The possibility is discussed to use the obtained results for describing
the heating and vaporization of material from the surface of & solid body in
the case of action of strong laser radiation with modulated streangth.

In connection with investigation of the possibility of heating metrial to
high temperatures by laser radiation with modulated strength, recently the
examination of & number of gasdynamic problems 1s of substantlal interest
which take place on focusing the radiation on the surface of condensed media.
The gasdynamic approach to the solution of indicated problems 1s dilctated by
the circumstance that for sufficlently powerful fluxes of laser radiation the
temperature increase is associated with an initlation of gasdynamlic motion of
material ("vaporization"), which in turn exerts substantial influence on the
entire process of heating. An essential peculiarity of the process under
examination, which complicates the solution of the problem, 1s the dependence
of the absorption power on the state of the substance in its gasdynamlc
motion.

Indeed, if the absorption coefficlent per unit mass 1s a constant value,
then the main part of the incident flux is absorbed 1n a layer of approxi-
mately constant mass with optical thickness ~1, and in this case it is not
dependent on the state of the substance. However, if the coefficient of
absorption depends on the density and temperature, which 1s realized for
example in an ionized gas, then the optical density of the substance strongly
depends on the distribution of gasdynamic quantities. In the latter case
equations of radiation transfer become substantially more compliocated because
of dependence on gasdynamic quantities.

Gasdynamic motion was taken into consideration for heating by laser radia-
tion of small volumes of material with constant mass in [1 and 2]. However,
in all these papers gasdynamic equations were not exsmined. The motion of
matter was described by means of quantities averaged over the volume. Heat-
ing of matter with varying mass without taking into account gasdynamic motion
wae examined in [3]. In papers L[4 and 5] gssdynamic motion was examined for
a given mass of material the optical thickness of which was much smaller than
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one, while the absorption depended on temperature and density.

One-dimensional gasdynamic problem of heating of material is examined
below for the case of incident strong monochromatic laser radlation on the
surface of gas which 1s initially cold and immobile and which prior to heat-
ing fills a halfspace adjacent to a vacuum. The speclal feature of the prob-
lem examined 1s, in distinction from those mentloned above, the exact solu-
tion of gasdynamic equations in case of changing mass which 1s included by
the motion in the process of action of a laser radiation pulse.

The solutisn of such a problem can be used for approximate description of
the process of vaporizatlion and heatlng of a solid substance placed 1n a
vacuum under the action of laser radlation.

1. Equations of motion, continuity, energy and transfer of radiation in
the planar case have the following form in Lagranglan mass coordinates:
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Here u 1s the veloeity, p 1s the pressure, v 1s specific volume,
e 1s internal energy per unit mass, F 1s the radiation flux, X is the
absorption coefficlent and m 1s the mass coordinate.
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At the initial instant the substance fills the halfspace m > 0 (x: 0)
and is cold (e = O) and ‘mmobile (u = 0) . At ¢ > O radiation flux 7
falls on the substance from the vacuum side. The !nitial and boundary con-
ditions thus have the form

F=u=p=090, v = v, for m >0, t=0 (1.2)
p=0, F=F, for m=20, ¢t>0
We shall assume that the coefficient of absorption X 1s a power function
of internal energy e &and density »p
K = aefp*

For fully ionized plasma,for example, @ = 2 and B = — 3/; . It is
apparent that for such a coefficient of absorption an increase in temperature
and expansion of gas lead to a decrease of absorption of heated and rarefied
layers and to & deeper penetration of radiation.

Let us examine the process of heating of material by radiation. For sim-
plicity in this connectlion we shall assume that the substance is a gas with
an equation of state e = pv(m — 1), where xn 1is the adiabatic index. The
expression presented above for the absorption coefficlent is applicable over
the entire range of densities and temperatures.

At first let us determine the maximum temperature which can be obtailned
on heating of a plane transparent layer of gas of fixed mass m¥. The energy
equation 1n thls case has the form
S+ P2 = KoF, (1.3)
From this we have the following expression for internal energy at some
point before arrival of rarefaction wave at that point
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e(t) = {_;- avo'ith}% (1.4

The wave propagation time of rarefaction over the distance x 1s equal to

t
¢ 5 o

z = )cdt =& ¥V %(x—1) [-g % F(,} s, ¢ = (npv)' (1.5)
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Maximum temperature is apparently achieved in the center of the layer,
i.e. at the point #7° and is determined from Equation

Jam®F, \Va

%l 2(n — 1)) (1.6)
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Corresponding numerical calculations, for which results are presented in
Fig.1l and 2, show that (1.6) is somewhat low value because the gas continues
to heat up during some 1n§erva1 of time after the arrival of the rarefaction

wave at the point m = #m
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Fig. 1 Fig. 2

In Fig.l the change of dimensionless product pv 1s shown as a function
of dimensibnless time ¢ (for relationships between dimensionless .and dimen-
sional variables see below) for various points of dimensionless mass,

In FPig. 2 the change of dimensionless veloclty wu 1s shown as a functlon
of time for the same particles of material, An analogous picture occurs, as
is shown by calculations, also in the c¢ase of spherical and cylindrical sym-
metry.

In the case when the gas fills the halfspace m > O , a wave of heating
propagates through this halfspace with a layer depth which is proportional
to the length of passage of the radiation quantum ] == x1 ~ /2~ ¢ (see
(1.4)). The rarefaction wave propagates according to the relationship
z~ 1" (see (1.5)). Consequently, in the beginning of the process the width
of the heating zone 1is significantly greater than the wildth of the region
where the gas moves and therefore it is permissible to neglect the change in
density. The problem of nonstationary heating wave with changing coefficlent
of absorption is self-similar and was examined in {4}, The heating wave has
a sharp front similar to a heat wave in case of nonlinear heat conductivity.
The character of temperature dependence in it 1s close to a plateau.

After some interval of time ¢,, the rarefactlon wave catches up with the
heating wave. This time 1s determined by the relationshilp
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() = 5 o(t) dt
0
where L 1is the average length of travel of the quantum over the heated
region (equal to the depth of the heating zone), ¢ 18 the sound speed.
From this it 1s possible to determine the i1nternal energy of gas e and
the temperature at the front of the heating wave, which is achieved at the
moment of arrival of the wave of rarefaction: e () = (F ¢vq)%/a.

In contrast to transparent mass 1n case of which the temperature has a
maximum at the moment when the gasdynamic motion starts, 1t is not obvious
for the case of heating of an unlimited mass of gas that a temperature de-
crease must take place wilth the beginning of gasdynamic motion.

In this case for ¢ > t, a regime occurs for which the rarefaction wave
front coincides with the heating wave front. For the absorption coefficient
assumed above, the behavior mentioned turns out to be self-ccnsistent [3].
The temperature increase takes place at the expense of absorption of incident
flux in the region which 1is encompassed by the gasdynamic motion with specil-
fic volume v, >» v,. The optical thickness of this region turns out to be
of the order of unity.

In connection with the possibility of existence of the mentioned behavior
of heating of gas which fills the halfspace x = O , the circumstance 1s
assumed to be essentlal Lna’ the analogous self-consistent behavlor can at
least asymptotically s‘abiliz~ itself in the interaction of strong laser
radiation with materisi evaporated from the surface of the sollid body.
Indeed, the flux of later radiition F, falling on the surface of a solid
body 18 absorbed in a lover the thickness of which is of the order of 107*
to 10"%cm (strongly absoriving materials similar to metals are examined).
After the time R

csw?
1> k2F 2

where ¢ 1s the heat capacity, ¢ 18 the coefficlent of thermal conducti-
vity, w 18 the energy of evaporation per atom, % 1is the Boltzmann con-
stant, the internal energy e of the absorbing layer becomes much greater
than the specific heat of vaporization and the vaporized material can be
assumed to be a gas. Subsequent heating of vaporized material must take
place in a self-consistent manner according to the following considerations.

Let the coefficient of absorption as before decrease with increase in
temperature and increase with increase in density. We shall assume, for
example, that the material evaporated up to some instant of time 1is transpar-
ent to incident radiation (low density and high temperature), then the vapors
will only slightly screen the surface from which intensive evaporation of
new portions of material will take place leading to an increase in density.
This in turn increases the absorption of radiation in vapors and consequently
the screening of the surface. The rate of evaporation decreases in the fol-~
lowing moments, which now leads to a decrease in the coefficient of absorp-
tion, etc. The considerations presented indicate that the process under
examlnation will lead to the situation where the optical thickness of the
vaporlzed layer will reach some constant value.

The problem consists of finding a solution of the system of equations (1.1)
for which the optical thickness of the layer of evaporated material will
reach some constant value. Such a solution exists and is independent of the
heat of sublimation. This naturally indicates that the self-consistent
behavior is stabilized starting from the instant of time when the temperature
of vapors at the surface of the so0lid body i1s much greater than 7 = w/k .

The existence of such a solution is formally related to the fact that in
satisfylng the indicated conditions the problem becomes self-similar. In
fact, 1f the absorption coefficient of vaporized material has the form
K (0, T) = ap*T? = axp'p* (r >0, s<0), then from the four determining
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parameters of the problem F,, a4 , p, and @ , only the first two are
essential (here we shall use Euler's coordinates x, t) .

Prom dimensional considerations 1t follows in this case that the unknown
funetions y , p and P must have the form

u= LV @m), o= FEPUURM),  p=FHTPM) (1)

0 = [a,F Jes]vi-treal, v=0E@r+9s/1—-@r+9)

Here A = Oxf* 1is the self-similar variable, U(r) , (1) and P()) are
dimenslonless velocity, density and pressure, respectively.

Approximate solution of the corresponding system of self-similar equations
for the case of plasma (r = 7/,, 8 = — %/,) gives for temperature and density
near the surface of the solid body and the amount of vaporized material the
followlng expressions:

0.97 Y, Yt - 10
= ""ﬁo—' HFQ /’0.2 /‘t /‘, p= 0.31F01/‘a2 s/’t_‘/', My = 0.37]‘70‘/’02 l/‘t f (18)

Here R, is the gas constant, u 18 the atomic weight. In this case the
ratioc of flux F incident on the surface of the solld body to the total flux
Fo has the value a 0.78. The ratio of velocity u, of gas boundary with

vacuum, and the velocity wuo near the surface of the solid body is «~ 5.2.

let us continue the examination of gas heating for the case where the
absorption coefficient changes in an exponentiaml fashion. We note that gas-
dynamic motion starts not only from the vacuum side but also as a result of
pressure drop at the front of the heating wave, After the zone of sharp
pressure gradients and large accelerations passes through a given particle,
the velocity achieved will have the order of magniltude

uoz—p-éi=—p~=—f-2~» 1.9)

Here Ax 1is the width of the "front" of the wave, p 1s the pressure in
the heated region, At 1is the time of passage of the wave front through a
glven point, D 1is the velocity of motion of the wave front of heating.
Wnen I Dbecomes smaller than the speed of sound in the heated medium, hydro-
dynamic perturbations separate from the front of heating wave and form a
shock wave front. The pressure in the region of the self-conslstent rare-
faction wave changes according to the relationship ;7—~a17;ht4ka‘yg If we
consider that this region serves as & piston for the shock wave located at
point m, and the pressure on its front is equal to p,~ p , then
and, consequently . F;*/’vol'ﬁt’sf“a“‘*’“ (1‘10)

From this 1t follows that with passage of time the shock wave separates
quite slowly from the zone of self-consistent rarefaction wave (M, ~ /e,
while my, ~ £/,
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Concepts presented above were checked by means of numerical calculations
for the case where the heated substance is a gas with the equation of state
e = pv/(x — 1) .

2. Now let us transform the system of equations (1.1) to a dimensionless
form, introducing such factors uo, Po, fo, Mo, Vo 8nd Fo that on multiply-
ing the correspcnding variables u, p, t, m, v and F by these factors,
Equatlons (1.1) do not change their form. For this the fulfilment of four
relationships 18 required

Ugmy = Doy, UgMg = Ugls, Pelyity = Foty,  Fo = pyivgiFeam, (2.1)

which we shall regard as a system of four equations with respect to four
unknowns 4o, Po, to and my , assuming the value vy to be equal to the
initial value of the specific volume of gas, while F, 18 equal to the value
of energy flux from the vacuum side. Then by the method of successive elimi-
nation of unknowns from (2.1), we find the relationships which we need

1 e s 1 S ? i
uo = (voFo)"?, po= o Fol, =7;Uo/Fo/’, my = 7}70'00'z (2.2)

Now it 1s sufficlent to solve system (1.1) for single values of initial
specific volume of gas and external flow. For any other values the solutions
are obtained by the method of multilpying the obtained functions by factors
(2.2). 1In this connection it is necessary to take into account that the
mass of the layer must be either unlimited or the recalculatlion will give a
solution for a new mass of layer m = m,FsUo?, where m; 1s the mass of the
layer for the solution with single parameters (m,= 1/a) .

a5 /ﬂ 28 . §%\
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Fig. 3 Fig.

For the case of constant radiation flux F, over the entire gas layer the
last limitation is removed since the number of equations 1is less by one. In
this case the transformation factors have the form

(aForn")l/’ m” e,

"
up = (aFo)*,  po (2.3)
where the energy flux from vacuum is taken as Fo, Vo 18 the initial specific
volume of gas, m° 1s the mass of the gas layer. A system of ordinary dif-
ferential equations was constructed which approximate the system of equations
(1.1) with accuracy to quantities of the order of l/h’
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Here F, 18 the total energy of unit mass of gas; the index { desig-
nates values of variables for m corresponding to ¢t =0, 1, 2, ..., n

Initial values and boundary values for unknown functions entering into
system (2.4) where taken in correspondence with initial values and boundary
values of the original system (1.1) of partial differential equations.

System (2.4) is obtalned under the assumption of sufficient smoothness of
functions entering into the system. It is natural that in the region of the
front of the shock wave where the values of derivatives are large, the compu-
tatlons will be made with considerable error, However the shock wave in the
present problem does not appear at cnce and 1s not determining for the basic
quantity sought which is the maximum temperature of the gas. Therefore sys-
tem (2.4) was utilized for making the continuous calculation. With the pur-
pose of eliminating the "bump" and large error near the front of the shock
wave after its formation, an averaging technique was applied as a method of
artificlal smoothing of values according to a recommendation by A.A. Miliutin.
The error of equations (2.4) increases in proportion to the increase of the

difference

f’i - <f’i>y

a4 L=1/55 where

P ¢=0530,, 20090 32—
| =0, SR Gy =1y i+ fiF i)

Mt=0,/.9j )( U Therefore the following was
0 i

[
adapted as a criterion for intro-
16, 32 48 m ,
E=1—<{fo/fi

duction of smoothing
// The value of [f, after aver-
aging is take:. to be equal to
04 the arithmetic average of 1ts
values at points ¢ -1, ¢ and
Fig. 5 t+1, i.e. to the value (f
before averaging.

In order to avoid averaging 1n the region of the leading front of the
heating wave where sharp gradients of temperature occur untlil processes of
hydrodynamic motion become substantial, the velocity was selected as the
quantity from which the need for smoothing was determined.

Results of numerical computations presented in Fig. 3 to 5, are in satis-
factory agreement with qualitative considerations presented above and with
self-similar solutions (1.8).

In Fig.3 the change of the maximum value of dimensionless internal energy
is shown as a function of dimensionless time. It 1s easy to see that for
t » 1 sharp deceleration in growth of e = pv/(n — 1) starts.

In Pig.4 the change of e 1s shown as a function of the dimensionless
Lagrange's coordinate m for several times. The formatlon of a shock wave
1s clearly evident.

In Fig.5 the distribution of dimensionless velocity u as a function of
dimensionless Lagrange's coordinate 1s shown for several instants of ¢ .
From a comparison of Figs. 4 and 5 it follows that starting with instants
t =~ 1 the front of the rarefaction waves moves together with the front of
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heating, 1.e. the self-consistent behavior has arrived.

The authors express deep gratitude to N.G. Basov, 8.P. Kurdiumov and
A.A Miliutin for discussions and suggestions and to V.V. Novikov for assist-
ance 1n carrylng out numerical calculations.
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